

10CS63

Sixth Semester B.E. Degree Examination, July/August 2021 Compiler Design

Time: 3 hrs.

1

2

3

4

Max. Marks:100

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

me: 3	hrs. Max. M	arks:100
	Note: Answer any FIVE full questions.	
a.	Write a note on impact of compiler technology on different areas of computer scie	
b.	Justify the need of 'lookahead' during lexical analysis. Illustrate how loo implemented using "Busses pairs' in lexical analysis.	(08 Marks) okahead is (06 Marks)
C.	Write a program segment for recognizing relational operators with first state and state implementation of its transition diagram.	· /
a. b.	Explain different error recovery strategies used during syntax analysis. Explain "dangling-else" grammar. Provide an unambiguous grammar for the same	
c.	Explain recursive descent parsing with an example.	(06 Marks) (06 Marks)
d.	Write an algorithm to remove left recursion from a grammar.	(04 Marks)
a.	Give the rules of constructing FIRST and FOLLOW sets. Construct the F FOLLOW sets for the following grammar. $E \rightarrow TE'$	FIRST and
	$E' \rightarrow + TE' \epsilon$	
	$T \rightarrow FT'$	
	$T' \rightarrow *FT' \varepsilon$ F \rightarrow (E) id	(10 Montre)
b.	Construct LL(1) parsing table for the following grammar:	(10 Marks)
U.	$P \rightarrow Ra Qba$	
	$R \rightarrow aba caba Rbc$	
	$Q \rightarrow bbc bc$	(10 Marks)
a.	Explain the working of shift reduce parse. Parse the input string int id, id; using s	hift reduce
	parses for the following grammar: $S \rightarrow TL$;	
	$T \rightarrow int float$	
	$L \rightarrow L, id id$	(08 Marks)
b.	Give an algorithm for construction of SLR parsing table.	(04 Marks)
C.	Construct the LR(1) parsing table for the following grammar: $S \rightarrow CC$	
	$C \rightarrow aC$	
	$C \rightarrow d$	(08 Marks)
	1 of 2	

10CS63

- 5 a. Explain the concept of Syntax-Directed Definitions (SDD) and differentiate among its clauses with suitable examples. (10 Marks)
 - b. Give the syntax directed definition for a simple type declaration in C and construct dependency graph for the input float a, b, c. (10 Marks)
- 6 a. What are Directed Acyclic Graphs (DAG). Develop an SDD to produce DAG for an expression. Construct DAG for the expression a + a * (b c) + (b c) * d. (10 Marks)
 b. Write and explain syntax directed definitions for flow of control statements. (10 Marks)
- 7 a. Explain the different forms of representing three address codes with examples. (08 Marks)
 b. Write a note on performance metrics to be considered while designing a garbage collector.
 - c. With a neat diagram, describe the general structure of an activation record. (06 Marks) (06 Marks)
- 8 a. Discuss the issues in the design of code generator. (10 Marks)
 b. Explain basic blocks and flow graphs with a suitable example. (10 Marks)